Prostate Cancer Clinical Trial

Genetic Analysis of Hereditary Prostate Cancer

Summary

Molecular approaches to the understanding of human neoplastic disease have revealed that multiple genetic alterations are an essential component of tumorigenesis. Both germline and somatic genetic alterations can be involved in the malignant transformation of normal cells. Identification of the genes involved in neoplastic transformation has been approached through the molecular analysis of sporadic cancers and the genetic study of families with an inherited predisposition for cancer. The interplay of these two approaches has led to the characterization of genes such as the retinoblastoma (Rb) gene, the p53 gene and the adenomatous polyposis coli (APC) gene that are all involved in the development of both hereditary and non-hereditary forms of cancer. Inherited mutations in such genes predispose affected families to hereditary cancer syndromes, affording an opportunity to identify genetic lesions that also cause the more common sporadic cancers.

Prostate cancer (PRCA) is the most common cancer diagnosed (1999 estimate 179,300 cases) and the second leading cause of cancer mortality (1999 estimate 37,000 deaths) in men in the United States. Family history is the single strongest risk factor currently known for prostate cancer. This raises the possibility that heritable genetic factors may be involved in the development of this disease in a subset of men. The genetic contribution to diseases of complex origin such as cancer is often most salient in families of early onset cases. Therefore, prostate cancer inheritance following a simple Mendelian pattern may be identified in the families of probands with early-onset cases. Common susceptibility alleles of small effect may be detectable in families with later-onsent and/or less strong family history of PRCA or in case-control data.

View Full Description

Full Description

Molecular approaches to the understanding of human neoplastic disease have revealed that multiple genetic alterations are an essential component of tumorigenesis. Both germline and somatic genetic alterations can be involved in the malignant transformation of normal cells. Identification of the genes involved in neoplastic transformation has been approached through the molecular analysis of sporadic cancers and the genetic study of families with an inherited predisposition for cancer. The interplay of these two approaches has led to the characterization of genes such as the retinoblastoma (Rb) gene, the p53 gene and the adenomatous polyposis coli (APC) gene that are all involved in the development of both hereditary and non-hereditary forms of cancer. Inherited mutations in such genes predispose affected families to hereditary cancer syndromes, affording an opportunity to identify genetic lesions that also cause the more common sporadic cancers.

Prostate cancer (PRCA) is the most common cancer diagnosed (1999 estimate 179,300 cases) and the second leading cause of cancer mortality (1999 estimate 37,000 deaths) in men in the United States. Family history is the single strongest risk factor currently known for prostate cancer. This raises the possibility that heritable genetic factors may be involved in the development of this disease in a subset of men. The genetic contribution to diseases of complex origin such as cancer is often most salient in families of early onset cases. Therefore, prostate cancer inheritance following a simple Mendelian pattern, may be identified in the families of probands with early-onset cases. Common susceptibility alleles of small effect may be detectable in families with later-onset and/or less strong family history of PRCA or in case-control data.

View Eligibility Criteria

Eligibility Criteria

INCLUSION CRITERIA:

Enrollment in this study includes case-control data from men with prostate cancer and matched controls who are free from the disease, plus affected and unaffected individuals from families who meet the following criteria for Hereditary Prostate Cancer:

A cluster of 3 or more first degree relatives, such as a father and 2 sons or 3 brothers
The occurrence of prostate cancer in each of 3 generations in either the proband's paternal or maternal lineages
Two first or second-degree relatives affected at an early age (age 55 years or younger).

Study is for people with:

Prostate Cancer

Estimated Enrollment:

7776

Study ID:

NCT00001469

Recruitment Status:

Completed

Sponsor:

National Human Genome Research Institute (NHGRI)

Check Your Eligibility

Let’s see if you might be eligible for this study.

What is your age and gender ?

Submit

There are 6 Locations for this study

See Locations Near You

Translational Genomics Research Institute
Phoenix Arizona, , United States
Howard University Hospital
Washington District of Columbia, 20060, United States
Louisiana State University
New Orleans Louisiana, 70112, United States
Johns Hopkins University
Baltimore Maryland, 21205, United States
National Institutes of Health Clinical Center, 9000 Rockville Pike
Bethesda Maryland, 20892, United States
Albert Einstein College of Medicine
Bronx New York, 10461, United States
Wake Forest University
Winston-Salem North Carolina, 27103, United States
Tampere University
Tampere , , Finland

How clear is this clinincal trial information?

Study is for people with:

Prostate Cancer

Estimated Enrollment:

7776

Study ID:

NCT00001469

Recruitment Status:

Completed

Sponsor:


National Human Genome Research Institute (NHGRI)

How clear is this clinincal trial information?

×

Introducing, the Journey Bar

Use this bar to access information about the steps in your cancer journey.

Please confirm you are a US based health care provider:

Yes, I am a health care Provider No, I am not a health care provider