Breast Cancer Clinical Trial

Home-Based Physical Activity Intervention for Taxane-Induced CIPN

Summary

This two-group, randomized control trial (RCT) will test the effects of a home-based, 16 week gait/balance training plus resistance (exercise bands) exercise program as compared to an educational cancer survivorship attention control condition to address persistent taxane-induced peripheral neuropathy in 312 patients treated for invasive breast cancer with taxanes at 1 year or more after completion of therapy. Assessments of lower extremity muscle strength, gait/balance, nerve conduction, neuropathy symptoms, and quality of life (QOL) will be performed.

The proposed exercise intervention addresses gait/balance impairments and motor (resistance) components of taxane-induced peripheral neuropathy. The mechanism by which the intervention achieves the proposed outcomes is though 1) increasing endoneurial blood flow to peripheral nerves and mitochondria resulting in reduction in neuropathic symptoms (including pain) and clinical manifestations of peripheral neuropathy, while improving gait/balance in those with persistent neuropathy; 2) The subsequent increase in nutrient supply allows the mitochondria to function more efficiently, and may alleviate the neuropathic manifestations of taxane-induced peripheral neuropathy. 15

This is the first study proposing to test the home-delivery of an exercise intervention specifically aimed at persistent (long-term) taxane-induced neuropathy. If successful, this study will provide the only evidence-based intervention for patients suffering from persistent neuropathy from neurotoxic chemotherapy. Additionally, the home-delivery format makes this intervention easily translated into clinical practice.

Specific Aims:

In a sample of patients who completed a taxane-containing chemotherapy regimen (> 1 year) for breast cancer and who have a persistent neuropathy (VAS score of > 3) the specific aims of this RCT are:

To test the efficacy of a 16-week -delivered program of gait/balance training plus resistance exercise, compared to an educational attention control condition in increasing muscle strength, improving gait/balance and nerve conduction parameters, decreasing the severity of taxane-induced peripheral neuropathy symptoms, and increasing quality of life.
To evaluate for differences in muscle strength, gait/balance, sensory (sural) and motor (peroneal) nerve conduction, peripheral neuropathy symptoms, and quality of life (QOL) between patients who receive the exercise program, compared to those in an educational attention control condition controlling for age, BMI, taxane cycles and intervals, neuropathic pain, neuropathy/pain medications, current resistance exercise participation and falls/near falls experienced.

View Full Description

Full Description

The use of taxanes in breast cancer chemotherapy regimens is considered standard first line therapy.1 However, taxanes are known to induce peripheral neuropathy, from 59-87% for paclitaxel and from 11-64% for docetaxel. 2-4 Sensory manifestations can include pain; numbness, tingling, & burning; diminished proprioception, and decreased vibration and touch sensation. 5-6 Motor symptoms such as lower extremity muscle weakness and impaired balance has been reported. 7 Currently, peripheral neuropathy remains a significant toxicity resulting in taxane chemotherapy dose reductions or discontinuation, with no evidence-based preventative or treatment strategies are available. 8 Taxanes induce sensory and motor neuropathy by inducing both mitochondrial and vascular dysfunction.9 In rodents, treatment with taxanes resulted in swollen, vacuolated axonal mitochondria that are functionally impaired, producing a chronic energy deficit.10 In addition, toxic effects to the endothelial cells of the vasa nervorum (small arterioles that supply peripheral nerves) in the dorsal root ganglia attenuates blood flow to neurons, resulting in endothelial cell death. 11 These findings suggest that both mitochondrial impairment and vascular damage are major mechanisms that underlie the development of taxane-induced peripheral neuropathy, manifesting as sensory manifestations and neuropathic pain. 9-12

Mitochondrial and vascular dysfunctions lead to sensory loss and reduced muscle strength, functions dependent upon cellular mitochondria to generate energy in the form of ATP (adenosine triphosphate). Thus, mitochondrial dysfunction results in the loss of energy-generating capability, and vascular impairment deprives muscle and nerve cells of oxygen-rich nutrients, further impairing neuronal function. A limited number of human and animal studies have demonstrated that exercise stimulates endothelium-dependent vasodilation and vascular endothelial growth factor (VEGF) expression, increasing endoneurial blood flow and energy generating capacity through mitochondrial protein synthesis and glycolysis, 13, 14

The proposed exercise intervention addresses gait/balance impairments and motor (resistance) components of taxane-induced peripheral neuropathy. The mechanism by which the intervention achieves the proposed outcomes is though 1) increasing endoneurial blood flow to peripheral nerves and mitochondria resulting in reduction in neuropathic symptoms (including pain) and clinical manifestations of peripheral neuropathy, while improving gait/balance in those with persistent neuropathy; 2) The subsequent increase in nutrient supply allows the mitochondria to function more efficiently, and may alleviate the neuropathic manifestations of taxane-induced peripheral neuropathy.

Specific Aims:

In a sample of patients who completed a taxane-containing chemotherapy regimen (> 1 year) for breast cancer and who have a persistent neuropathy (VAS score of > 3) the specific aims of this RCT are:

To test the efficacy of a 16-week -delivered program of gait/balance training plus resistance exercise, compared to an educational attention control condition in increasing muscle strength, improving gait/balance and nerve conduction parameters, decreasing the severity of taxane-induced peripheral neuropathy symptoms, and increasing quality of life.
To evaluate for differences in muscle strength, gait/balance, sensory (sural) and motor (peroneal) nerve conduction, peripheral neuropathy symptoms, and quality of life (QOL) between patients who receive the exercise program, compared to those in an educational attention control condition controlling for age, BMI, taxane cycles and intervals, neuropathic pain, neuropathy/pain medications, current resistance exercise participation and falls/near falls experienced

View Eligibility Criteria

Eligibility Criteria

Inclusion Criteria:

Female breast cancer survivors (>21) with who completed treatment for invasive breast cancer with taxane-based chemotherapy, and who have a peripheral neuropathy score of > 3 by VAS rating consistent with studies of diabetic peripheral neuropathy.

Exclusion Criteria:

any disease (e.g. diabetes, HIV) that results in peripheral neuropathy or muscle weakness (such as chronic fatigue syndrome, multiple sclerosis, spinal cord tumors or injuries, stroke,); any disease that would preclude exercise (preexisting cardiopulmonary disease, bone metastasis). Individuals with symptomatic lymphedema or advanced disease at high risk for bone metastases and pathologic fracture will be excluded.

Study is for people with:

Breast Cancer

Estimated Enrollment:

312

Study ID:

NCT04621721

Recruitment Status:

Recruiting

Sponsor:

University of South Florida

Check Your Eligibility

Let’s see if you might be eligible for this study.

What is your age and gender ?

Submit

There is 1 Location for this study

See Locations Near You

University of South Florida
Tampa Florida, 33612, United States More Info
Constance Visovsky
Contact
813-974-3831
[email protected]
Jillian Coury
Contact
8139745117
[email protected]
Ming Ji, PhD
Sub-Investigator
Haladay Douglas, PhD
Sub-Investigator
Teran Wodzinski Patricia, PhD
Sub-Investigator
Vu Tuan, MD
Sub-Investigator

How clear is this clinincal trial information?

Study is for people with:

Breast Cancer

Estimated Enrollment:

312

Study ID:

NCT04621721

Recruitment Status:

Recruiting

Sponsor:


University of South Florida

How clear is this clinincal trial information?

×

Introducing, the Journey Bar

Use this bar to access information about the steps in your cancer journey.

Please confirm you are a US based health care provider:

Yes, I am a health care Provider No, I am not a health care provider